事業計画:波力発電の採算(1.5m)

□POWER GENERATION ANALYSIS (2)
1ページ/1ページ

****************************************
* POWER GENERATION ANALYSIS (2)
****************************************
3. Movement analysis-1 by gravity
(A) Gravity acts from the top dead center (D) to the bottom dead center (F).
(B) When gravity (7200kgf) is larger than the torque loads (4356kgf), the power generation
 buoy goes down to the bottom dead center (F).
(C) The torque load and the buoyancy do the balance in point (E).
(D) When the power generation buoy exceeds the point (E), it descends with turning the
 dynamo.
(E) The weight of the power generation buoy and the buoyancy do the balance, and the
 power generation buoy stabilizes in neighborhood of the bottom dead center (F).
(F) The dynamo generates electricity from the point (E) to the point (F) by gravitation.

4. Movement analysis-2 by gravity
(A) The gravity force increases from 0kgf of point (E) to 2844 (2844= 7200-4356) kgf of
 the bottom center (F). The gravity force of 1422(1422=2844/2)kgf acts on the average.
(B) The mass of the buoy is 7200kg. F=mα. Therefore it is 1422(kgf)= 7200(kg)*α
(C) α= 0.1975 (kgf/kg) = 0.1975*9.81(N/kg)= 1.9375(m/sec^2)
(D) S= (1/2)*α*t^2, α= 1.9375(m/sec^2), t1b= 1.24(sec), It is 1.24sec from point (E) to
 the dead bottom center (F).
(E) S= (1/2)*1.9375(m/sec^2)*1.24(sec)*1.24(sec)= 1.4808(m)= 1481(mm)
(F) The falling distance from point (E) to point (F) is 1500mm (Hmg). The calculated
 distance (1481mm) is nearly equal to 1500mm (Hmg). The buoy will stabilize in the
 neighborhood of the bottom dead center (F).
*
B. Calculation of work and work rate at 1500mm wave height, torque load (3630kgf) with
 freeing the load at the top dead center
1. Work by buoyancy
(A) The torque load is 3630kgf, and the distance is 522.5mm (Hmb).
(B) The work by buoyancy: Wb= 3630(kgf)*(522.5/1000)(m)= 1896.7 (kgf*m)
2. Work by gravity
(A) The torque load is 4356kgf, and the distance is 1500mm (Hmg).
(B) The work by gravity: Wg= 4356(kgf)*(1500/1000)(m)= 6534.0 (kgf*m)
3. Total Work; Wt= 1896.7 (kgf*m) + 6534.0 (kgf*m)= 8430.7 (kgf*m)
4. Work rate
(A) The work rate is obtained by dividing the total work by the cycle of wave.
(B) Total work is 8430.7(kgf*m), and the cycle of the wave is 5.70sec (t0).
(C) Total work rate: Wr= 8430.7(kgf*m)/5.70(sec)= 1479.1 (kgf*m/sec)
(D) 1(kgf*m/sec)= 9.81(W)= 0.00981(kW), Wr= 1479.1*0.00981(kW)= 14.5 (kW)
*
C. When the pinion gears are connected to the dynamo with the gearless transmission, the
 torque load can be arbitrarily varied. Therefore, it becomes possible to stop the power
 generation buoy at stormy weather.
D. Ocean wave is generated by the wind and gravity. The waves data is observed as a
 function of the velocity of the wind.
*
Table 2 shows the observational data.
 A:Amplitude of wave(m), B:Velocity of the wind(m/sec), C: Cycle(sec), D: Wavelength(m)
  A   B    _C   D
  1.5  7.07  5.7  50.00
  2.0  8.16  6.5  66.67
  2.5  9.13  7.3  83.33
  3.0 _10.00  8.0 _100.00
  3.5 _10.80  8.6 _116.67
       TABLE-2
*
要約すると・・・。
 1.波の「うねり」は、海上の風力と地球の重力で発生し、そのエネルギーは永遠で、かつ燃料
  費は永遠に無料である。
 2.日本近海での「うねり」は世界の海洋標準では平凡で、波高が1.5m程度と予想される。
  なお、波高1.5mの「うねり」は、海上風速7.07m/秒の風力に相当する。
 3.その見積もり計算は非常に複雑であるが、波高1.5mの「うねり」で波力発電をおこなう
  場合、その発電能力は750m×1500mの海上面積で、概ね14.5kWと計算される。
*

[戻る]
[TOPへ]

[しおり]






カスタマイズ